Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255999

RESUMO

Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon associated with breast cancer. Our lab previously reported that the organosulfur compound (OSC), diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neoplastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation, clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG) DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing AhR, ARNT/HIF-1ß, and CYP1A1 protein expression compared with the control in MCF-10AT1 cells. B[a]P/DATS's co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its chemopreventive effects in breast cancer.


Assuntos
Compostos Alílicos , Neoplasias da Mama , Alho , Lesões Pré-Cancerosas , Sulfetos , Humanos , Feminino , Antioxidantes , Espécies Reativas de Oxigênio , Dano ao DNA , Lesões Pré-Cancerosas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Estresse Oxidativo
2.
Nutrients ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276538

RESUMO

Exposure to B[a]P, the most characterized polycyclic aromatic hydrocarbon, significantly increases breast cancer risk. Our lab has previously reported that diallyl trisulfide (DATS), a garlic organosulfur compound (OSC) with chemopreventive and cell cycle arrest properties, reduces lipid peroxides and DNA damage in normal breast epithelial (MCF-10A) cells. In this study, we evaluated the ability of DATS to block the B[a]P-induced initiation of carcinogenesis in MCF-10A cells by examining changes in proliferation, clonogenic formation, reactive oxygen species (ROS) formation, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, and protein expression of ARNT/HIF-1ß, CYP1A1, and DNA POLß. The study results indicate that B[a]P increased proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing the protein expression of ARNT/HIF-1ß and CYP1A1 compared to the control. Conversely, DATS/B[a]P co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, and 8-OHdG levels compared to B[a]P alone. Treatment with DATS significantly inhibited (p < 0.0001) AhR expression, implicated in the development and progression of breast cancer. The CoTx also attenuated all the above-mentioned B[a]P-induced changes in protein expression. At the same time, it increased DNA POLß protein expression, which indicates increased DNA repair, thus causing a chemopreventive effect. These results provide evidence for the chemopreventive effects of DATS in breast cancer prevention.


Assuntos
Compostos Alílicos , Anticarcinógenos , Neoplasias da Mama , Alho , Lesões Pré-Cancerosas , Humanos , Feminino , Alho/metabolismo , Antioxidantes/farmacologia , Benzo(a)pireno/toxicidade , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Apoptose , Sulfetos/farmacologia , Células Epiteliais/metabolismo , Anticarcinógenos/farmacologia , Reparo do DNA , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/prevenção & controle , DNA
3.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764312

RESUMO

The absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor-2 restricts the therapy choices for treating triple-negative breast cancer (TNBC). Moreover, conventional medication is not highly effective in treating TNBC, and developing effective therapeutic agents from natural bioactive compounds is a viable option. In this study, the anticancer effects of the natural compound fucoxanthin were investigated in two genetically different models of TNBC cells: MDA-MB-231 and MDA-MB-468 cells. Fucoxanthin had a significant anticancer effect in both cell lines at a concentration range of 1.56-300 µM. The compound decreased cell viability in both cell lines with higher potency in MDA-MB-468 cells. Meanwhile, proliferation assays showed similar antiproliferative effects in both cell lines after 48 h and 72 h treatment periods. Flow cytometry and Annexin V-FITC apoptosis assay revealed the ability of fucoxanthin to induce apoptosis in MDA-MB-231 only. Cell cycle arrest analysis showed that the compound also induced cell cycle arrest at the G1 phase in both cell lines, accompanied by more cell cycle arrest in MDA-MB-231 cells at S-phase and a higher cell cycle arrest in the MDA-MB-468 cells at G2-phase. Wound healing and migration assay showed that in both cell lines, fucoxanthin prevented migration, but was more effective in MDA-MB-231 cells in a shorter time. In both angiogenic cytokine array and RT-PCR studies, fucoxanthin (6.25 µM) downregulated VEGF-A and -C expression in TNF-α-stimulated (50 ng/mL) MDA-MB-231, but not in MDA-MB-468 cells on the transcription and protein levels. In conclusion, this study shows that fucoxanthin was more effective in MDA-MB-231 TNBC cells, where it can target VEGF-A and VEGF-C, inhibit cell proliferation and cell migration, and induce cell cycle arrest and apoptosis-the most crucial cellular processes involved in breast cancer development and progression.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Pontos de Checagem do Ciclo Celular , Apoptose
4.
Front Oncol ; 13: 1180084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588095

RESUMO

The presence of microorganism communities (MOCs) comprised of bacteria, fungi, archaea, algae, protozoa, viruses, and the like, are ubiquitous in all living tissue, including plant and animal. MOCs play a significant role in establishing innate and acquired immunity, thereby influencing susceptibility and resistance to disease. This understanding has fostered substantial advancements in several fields such as agriculture, food science/safety, and the development of vaccines/adjuvants, which rely on administering inactivated-attenuated MOC pathogens. Historical evidence dating back to the 1800s, including reports by Drs Busch, Coley, and Fehleisen, suggested that acute febrile infection in response to "specific microbes" could trigger spontaneous tumor remission in humans. This discovery led to the purposeful administration of the same attenuated strains, known as "Coley's toxin," marking the onset of the first microbial (pathogen) associated molecular pattern (MAMPs or PAMPs)-based tumor immunotherapy, used clinically for over four decades. Today, these same MAMPS are consumed orally by billions of consumers around the globe, through "specific" mediums (immune boosting "herbal supplements") as carriers of highly concentrated MOCs accrued in roots, barks, hulls, sea algae, and seeds. The American Herbal Products Association (AHPA) mandates microbial reduction in botanical product processing but does not necessitate the removal of dead MAMP laden microbial debris, which we ingest. Moreover, while existing research has focused on the immune-modulating role of plant phytochemicals, the actual immune-boosting properties might instead reside solely in the plant's MOC MAMP laden biomass. This assertion is logical, considering that antigenic immune-provoking epitopes, not phytochemicals, are known to stimulate immune response. This review explores a neglected area of research regarding the immune-boosting effects of the herbal microbiome - a presence which is indirectly corroborated by various peripheral fields of study and poses a fundamental question: Given that food safety focuses on the elimination of harmful pathogens and crop science acknowledges the existence of plant microbiomes, what precisely are the immune effects of ingesting MAMPs of diverse structural composition and concentration, and where are these distributed in our botanicals? We will discuss the topic of concentrated edible MAMPs as acid and thermally stable motifs found in specific herbs and how these would activate cognate pattern recognition receptors (PPRs) in the upper gut-associated lymphoid tissue (GALT), including Peyer's patches and the lamina propria, to boost antibody titers, CD8+ and CD4+ T cells, NK activity, hematopoiesis, and facilitating M2 to M1 macrophage phenotype transition in a similar manner as vaccines. This new knowledge could pave the way for developing bioreactor-grown/heat-inactivated MOC therapies to boost human immunity against infections and improve tumor surveillance.

5.
Brain Sci ; 13(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37626501

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder leading to cognitive decline and memory loss. The incidence of this disease continues to increase due to the limited number of novel therapeutics that prevent or slow down its progression. Flavonoids have been investigated for their potential effects on cellular damage triggered by excessive reactive oxygen species (ROS) and neuroinflammatory conditions. This study investigated the effect of the flavonoid hesperetin on LPS-activated murine BV-2 microglial cells. Results show that hesperetin reduced nitric oxide levels and increased catalase, glutathione, and superoxide dismutase levels, suggesting its potential to reduce neuroinflammation and oxidative stress. Moreover, RT-PCR arrays showed that hesperetin modulated multiple genes that regulate oxidative stress. Hesperetin downregulated the mRNA expression of ERCC6, NOS2, and NCF1 and upregulated HMOX1 and GCLC. RT-PCR results showed that hesperetin-induced Nrf2 mRNA and protein expression in LPS-activated BV-2 microglial cells is involved in the transcription of several antioxidant genes, suggesting that hesperetin's antioxidant effects may be exerted via the Keap1/Nrf2 signaling pathway. Furthermore, the data demonstrated that hesperetin reduced the gene expression of PD-L1, which is upregulated as an individual ages and during chronic inflammatory processes, and inhibited the expression of genes associated with NF-kB signaling activation, which is overactivated during chronic inflammation. It was concluded from this investigation that hesperetin may have therapeutic potential to prevent or slow down the progression of neurodegenerative diseases, such as Alzheimer's disease, by reducing chronic oxidative stress and modulating neuroinflammation.

6.
Cancer Genomics Proteomics ; 20(4): 323-342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37400144

RESUMO

BACKGROUND/AIM: Chemotherapy resistance in triple-negative breast cancer (TNBC) cells is well documented. Therefore, it is necessary to develop safer and more effective therapeutic agents to enhance the outcomes of chemotherapeutic agents. The natural alkaloid sanguinarine (SANG) has demonstrated therapeutic synergy when coupled with chemotherapeutic agents. SANG can also induce cell cycle arrest and trigger apoptosis in various cancer cells. MATERIALS AND METHODS: In this study, we investigated the molecular mechanism underlying SANG activity in MDA-MB-231 and MDA-MB-468 cells as two genetically different models of TNBC. We employed various assays including Alamar Blue to measure the effect of SANG on cell viability and proliferation rate, flow cytometry analysis to study the potential of the compound to induce apoptosis and cell cycle arrest, quantitative qRT PCR apoptosis array to measure the expression of different genes mediating apoptosis, and the western system was used to analyze the impact of the compound on AKT protein expression. RESULTS: SANG lowered cell viability and disrupted cell cycle progression in both cell lines. Furthermore, S-phase cell cycle arrest-mediated apoptosis was found to be the primary contributor to cell growth inhibition in MDA-MB-231 cells. SANG-treated TNBC cells showed significantly up-regulated mRNA expression of 18 genes associated with apoptosis, including eight TNF receptor superfamily (TNFRSF), three members of the BCL2 family, and two members of the caspase (CASP) family in MDA-MB-468 cells. In MDA-MB-231 cells, two members of the TNF superfamily and four members of the BCL2 family were affected. The western study data showed the inhibition of AKT protein expression in both cell lines concurrent with up-regulated BCL2L11 gene. Our results point to the AKT/PI3K signaling pathway as one of the key mechanisms behind SANG-induced cell cycle arrest and death. CONCLUSION: SANG shows anticancer properties and apoptosis-related gene expression changes in the two TNBC cell lines and suggests AKT/PI3K pathway implication in apoptosis induction and cell cycle arrest. Thus, we propose SANG's potential as a solitary or supplementary treatment agent against TNBC.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Pontos de Checagem do Ciclo Celular , Apoptose , Proliferação de Células , Proteínas Proto-Oncogênicas c-bcl-2 , Linhagem Celular Tumoral
7.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446045

RESUMO

Chronic oxidative stress (OS) and inflammation are implicated in developing and progressing neurodegenerative diseases (NDs). The chronic activation of microglia cells leads to the overproduction of several substances, including nitric oxide and reactive oxygen species, which can induce neurodegeneration. Natural compounds have recently been investigated for their potential to protect cells from OS and to improve many disease-related conditions. Cardamonin (CD) is a bioactive compound in many plants, such as Alpinia katsumadai and Alpinia conchigera. The present study examined the effects of CD on LPS-activated BV-2 microglial cells. The cell viability results showed that the increasing concentrations of CD, ranging from 0.78 to 200 µM, induced BV-2 cell cytotoxicity in a dose-response manner. In the nitric oxide assay, CD concentrations of 6.25 to 25 µM reduced the release of nitric oxide in LPS-activated BV-2 cells by 90% compared to those treated with LPS only (p ≤ 0.0001). CD (6.25 µM) significantly decreased the cellular production of SOD (3-fold (p ≤ 0.05)) and increased the levels of expression of CAT (2.5-fold (p ≤ 0.05)) and GSH (2-fold (p ≤ 0.05)) in the LPS-activated BV-2 cells. Furthermore, on RT-PCR arrays, CD (6.25 µM) downregulated mRNA expression of CCL5/RANTES (5-fold), NOS2 (2-fold), SLC38A1 (3-fold), TXNIP (2-fold), SOD1 (2-fold), SOD2 (1.5-fold) and upregulated GSS (1.9-fold), GCLC (1.7-fold) and catalase (2.9-fold) expression, indicating CD efficacy in modulating genes involved in OS and inflammation. Furthermore, CD (6.25 µM) increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and lowered the levels of Kelch-like ECH-associated protein 1 (Keap1), indicating that this may be the signaling responsible for the elevation of antioxidant factors. Lastly, the results showed that CD (6.25 µM) modulated genes and proteins associated with the NF-kB signaling, downregulating genes related to excessive neuroinflammation. These results imply that CD may be a potential compound for developing therapeutic and preventive agents in treating neurodegeneration induced by excessive OS and inflammation.


Assuntos
Antioxidantes , NF-kappa B , Humanos , NF-kappa B/metabolismo , Antioxidantes/metabolismo , Microglia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Linhagem Celular , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo
8.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373025

RESUMO

The lack of identifiable molecular targets or biomarkers hinders the development of treatment options in triple-negative breast cancer (TNBC). However, natural products offer a promising alternative by targeting inflammatory chemokines in the tumor microenvironment (TME). Chemokines are crucial in promoting breast cancer growth and metastasis and correlate to the altered inflammatory process. In the present study, we evaluated the anti-inflammatory and antimetastatic effects of the natural product thymoquinone (TQ) on TNF-α-stimulated TNBC cells (MDA-MB-231 and MDA-MB-468) to study the cytotoxic, antiproliferative, anticolony, antimigratory, and antichemokine effects using enzyme-linked immunosorbent assays, quantitative real-time reverse transcription-polymerase chain reactions, and Western blots were used in sequence to validate the microarray results further. Four downregulated inflammatory cytokines were identified, CCL2 and CCL20 in MDA-MB-468 cells and CCL3 and CCL4 in MDA-MB-231 cells. Furthermore, when TNF-α-stimulated MDA-MB-231 cells were compared with MDA-MB-468 cells, the two cells were sensitive to TQ's antichemokine and antimetastatic effect in preventing cell migration. It was concluded from this investigation that genetically different cell lines may respond to TQ differently, as TQ targets CCL3 and CCL4 in MDA-MB-231 cells and CCL2 and CCL20 in MDA-MB-468 cells. Therefore, the results indicate that TQ may be recommended as a component of the therapeutic strategy for TNBC treatment. These outcomes stem from the compound's capacity to suppress the chemokine. Even though these findings support the usage of TQ as part of a therapy strategy for TNBC associated with the identified chemokine dysregulations, additional in vivo studies are needed to confirm these in vitro results.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Quimiocinas/farmacologia , Proliferação de Células , Apoptose , Microambiente Tumoral
9.
Artigo em Inglês | MEDLINE | ID: mdl-37297592

RESUMO

Being cognizant of the pronounced health advantages of breastfeeding for both the nursing mother and her infant, the breastfeeding dyad, we examined breastfeeding rates among Floridian women who gave birth from 2012 to 2014 (N = 639,052). We investigated the associations between breastfeeding initiation and WIC-based breastfeeding support (the Special Supplemental Nutrition Program for Women, Infants, and Children), education level, and race and ethnicity. We compared the percentage of breastfeeding mothers between those in the WIC program and those who were not, and we compared breastfeeding rates across racial and ethnic groups. Consistent with previous reports, black newborns in this study were breastfed at lower rates than other racial groups, and WIC program participants were less likely to breastfeed than non-WIC program participants. However, by breaking down the data by education level and race, and ethnicity, we see a significantly increased rate of breastfeeding due to WIC participation for both Hispanic and black women with less than a high school education. Further, we assessed differences by insurance type, race, and WIC participation. In multivariable logistic regression, we showed that the WIC program has a significant positive impact on breastfeeding rates for all but white non-Hispanic mothers, independent of sociodemographic and geographic variables. We also note a trend of increasing breastfeeding rates over the study period (p-value < 0.0001), which has positive public health implications.


Assuntos
Aleitamento Materno , Assistência Alimentar , Humanos , Lactente , Recém-Nascido , Criança , Feminino , Florida , Fenômenos Fisiológicos da Nutrição do Lactente , Etnicidade , Mães
10.
Brain Sci ; 13(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190597

RESUMO

Chronic neuroinflammation is associated with many neurodegenerative diseases, such as Alzheimer's. Microglia are the brain's primary immune cells, and when activated, they release various proinflammatory cytokines. Several natural compounds with anti-inflammatory and antioxidant properties, such as epigallocatechin 3-gallate (EGCG), may provide a promising strategy for inflammation-related neurodegenerative diseases involving activated microglia cells. The objective of the current study was to examine the molecular targets underlying the anti-inflammatory effects of EGCG in activated microglia cells. BV-2 microglia cells were grown, stimulated, and treated with EGCG. Cytotoxicity and nitric oxide (NO) production were evaluated. Immunoassay, PCR array, and WES™ Technology were utilized to evaluate inflammatory, neuroprotective modulators as well as signaling pathways involved in the mechanistic action of neuroinflammation. Our findings showed that EGCG significantly inhibited proinflammatory mediator NO production in LPS-stimulated BV-2 microglia cells. In addition, ELISA analysis revealed that EGCG significantly decreases the release of proinflammatory cytokine IL-6 while it increases the release of TNF-α. PCR array analysis showed that EGCG downregulated MIF, CCL-2, and CSF2. It also upregulated IL-3, IL-11, and TNFS10. Furthermore, the analysis of inflammatory signaling pathways showed that EGCG significantly downregulated mRNA expression of mTOR, NF-κB2, STAT1, Akt3, CCL5, and SMAD3 while significantly upregulating the expression of mRNA of Ins2, Pld2, A20/TNFAIP3, and GAB1. Additionally, EGCG reduced the relative protein expression of NF-κB2, mTOR, and Akt3. These findings suggest that EGCG may be used for its anti-inflammatory effects to prevent neurodegenerative diseases.

11.
Anticancer Res ; 43(6): 2393-2405, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247921

RESUMO

BACKGROUND/AIM: Diallyl trisulfide (DATS) has been shown to prevent and inhibit carcinogenesis in cancer cells. We have previously shown DATS's ability to decrease the percentage of viable cells, inhibit cell migration and modulate genes involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B) and mitogen-activated protein kinase (MAPK) signaling. MATERIALS AND METHODS: This study aimed to compare the efficacy of DATS in tumor necrosis factor alpha (TNF-α) induced MDA-MB-231 and MDA-MB-468 cells and investigate its role in cell-death signaling via cell cycle, flow cytometry, and caspase assay. RESULTS: DATS exhibit a time-dependent accumulation of G2/M phase cells in both cell lines, with higher effects in the MDA-MB-468 for all time points. DATS's ability to decrease the percentage of viable cells in both MDA-MB-231 and MDA-MB-468 cells was shown by a significant but slight increase of early and late apoptosis in the presence of DATS compared to control. Moreover, MDA-MB-468 cells showed more sensitivity to the DATS effect, evidenced by the higher percentage of apoptosis than MDA-MB-231 cells. The caspase studies showed a significant increase in caspase 3 and 8 activity in the presence of DATS, compared to control, in both cell lines. DATS showed no significant increase in caspase 9 activity in both cell lines compared to the control. CONCLUSION: DATS-induced apoptosis in human breast cancer cells is mediated, at least in part, by cell cycle arrest and caspase activity. These findings provide information for future studies into the role of DATS in TNBC therapy and prevention.


Assuntos
Compostos Alílicos , Neoplasias de Mama Triplo Negativas , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Sulfetos/farmacologia , Apoptose , Compostos Alílicos/farmacologia , Caspases
12.
Cancer Genomics Proteomics ; 20(3): 247-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093683

RESUMO

BACKGROUND/AIM: Compared to other breast cancer types, triple-negative breast cancer (TNBC) has historically had few treatment alternatives. Therefore, exploring and pinpointing potentially implicated genes could be used for treating and managing TNBC. By doing this, we will provide essential data to comprehend how the genes are involved in the apoptotic pathways of the cancer cells to identify potential therapeutic targets. Analysis of a single genetic alteration may not reveal the pathogenicity driving TNBC due to the high genomic complexity and heterogeneity of TNBC. Therefore, searching through a large variety of gene interactions enabled the identification of molecular therapeutic genes. MATERIALS AND METHODS: This study used integrated bioinformatics methods such as UALCAN, TNM plotter, PANTHER, GO-KEEG and PPIs to assess the gene expression, protein-protein interaction (PPI), and transcription factor interaction of apoptosis-regulated genes. RESULTS: Compared to normal breast tissue, gene expressions of BNIP3, TNFRSF10B, MCL1, and CASP4 were downregulated in UALCAN. At the same time, BIK, AKT1, BAD, FADD, DIABLO, and CASP9 was down-regulated in bc-GeneExMiner v4.5 mRNA expression (BCGM) databases. Based on GO term enrichment analysis, the cellular process (GO:0009987), which has about 21 apoptosis-regulated genes, is the top category in the biological processes (BP), followed by biological regulation (GO:0065007). We identified 29 differentially regulated pathways, including the p53 pathway, angiogenesis, apoptosis signaling pathway, and the Alzheimer's disease presenilin pathway. We examined the PPIs between the genes that regulate apoptosis; CASP3 and CASP9 interact with FADD, MCL1, TNF, TNFRSRF10A, and TNFRSF10; additionally, CASP3 significantly forms PPIs with CASP9, DFFA, and TP53, and CASP9 with DIABLO. In the top 10 transcription factors, the androgen receptor (AR) interacts with five apoptosis-regulated genes (p<0.0001; q<0.01), followed by retinoic acid receptor alpha (RARA) (p<0.0001; q<0.01) and ring finger protein (RNF2) (p<0.0001; q<0.01). Overall, the gene expression profile, PPIs, and the apoptosis-TF interaction findings suggest that the 27 apoptosis-regulated genes might be used as promising targets in treating and managing TNBC. Furthermore, from a total of 27 key genes, CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were significantly correlated with poor overall survival in TNBC (p-value <0.05); they could play important roles in the progression of TNBC and provide attractive therapeutic targets that may offer new candidate molecules for targeted therapy. CONCLUSION: Our findings demonstrate that CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were substantially associated with the overall survival rate (OS) difference of TNBC patients out of a total of 27 specific genes used in this study, which may play crucial roles in the development of TNBC and offer promising therapeutic interventions.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 3/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Regulação Neoplásica da Expressão Gênica , Complexo Repressor Polycomb 1/genética
13.
Brain Sci ; 13(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672126

RESUMO

Neurodegenerative diseases (ND) include a wide range of conditions that result from progressive damage to the neurons. Alzheimer's disease (AD) is one of the most common NDs, and neuroinflammation and oxidative stress (OS) are the major factors in the development and progression of the disease. Many naturally occurring phytochemical compounds exhibit antioxidant and anti-inflammatory activities with potential neuroprotective effects. Several plant species, including Alpinia katsumadai and Alpinia conchigera, contain cardamonin (CD). CD (2',4'-dihydroxy-6'methoxychalcone) has many therapeutic properties, including anticancer, anti-inflammatory, antioxidant, antiviral, and antibiotic activities. CD is a potent compound that can reduce OS and modulate the inflammatory processes that play a significant part in developing neurodegenerative diseases. CD has been shown to modulate a variety of signaling molecules involved in the development and progression of ND, including transcription factors (NF-kB and STAT3), cytokines (TNF-α, IL-1, and IL-6), enzymes (COX-2, MMP-9, and ALDH1), and other proteins and genes (Bcl-2, XIAP, and cyclin D1). Additionally, CD effectively modulates miRNA levels and autophagy-related CD-protective mechanisms against neurodegeneration. In summary, this review provides mechanistic insights into CD's ability to modify multiple oxidative stress-antioxidant system pathways, Nrf2, and neuroinflammation. Additionally, it points to the possible therapeutic potential and preventive utilization of CD in neurodegenerative diseases, most specifically AD.

14.
Molecules ; 29(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202644

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks specific targets such as estrogen, progesterone, and HER2 receptors. TNBC affects one in eight women in the United States, making up 15-20% of breast cancer cases. Patients with TNBC can develop resistance to chemotherapy over time, leading to treatment failure. Therefore, finding other options like natural products is necessary for treatment. The advantages of using natural products sourced from plants as anticancer agents are that they are less toxic, more affordable, and have fewer side effects. These products can modulate several cellular processes of the tumor microenvironment, such as proliferation, migration, angiogenesis, cell cycle arrest, and apoptosis. The phosphatidyl inositol 3-kinase (PI3K)-AKT signaling pathway is an important pathway that contributes to the survival and growth of the tumor microenvironment and is associated with these cellular processes. This current study examined the anticancer effects of fucoxanthin, a marine carotenoid isolated from brown seaweed, in the MDA-MB-231 and MDA-MB-468 TNBC cell lines. The methods used in this study include a cytotoxic assay, PI3K-AKT signaling pathway PCR arrays, and Wes analysis. Fucoxanthin (6.25 µM) + TNF-α (50 ng/mL) and TNF-α (50 ng/mL) showed no significant effect on cell viability compared to the control in both MDA-MB-231 and MDA-MB-468 cells after a 24 h treatment period. PI3K-AKT signaling pathway PCR array studies showed that in TNF-α-stimulated (50 ng/mL) MDA-MB-231 and MDA-MB-468 cells, fucoxanthin (6.25 µM) modulated the mRNA expression of 12 genes, including FOXO1, RASA1, HRAS, MAPK3, PDK2, IRS1, EIF4EBP1, EIF4B, PTK2, TIRAP, RHOA, and ELK1. Additionally, fucoxanthin significantly downregulated the protein expression of IRS1, EIF4B, and ELK1 in MDA-MB-231 cells, and no change in the protein expression of EIF4B and ELK1 was shown in MDA-MB-468 cells. Fucoxanthin upregulated the protein expression of RHOA in both cell lines. The modulation of the expression of genes and proteins of the PI3K-AKT signaling pathway may elucidate fucoxanthin's effects in cell cycle progression, apoptotic processes, migration, and proliferation, which shows that PI3K-AKT may be the possible molecular mechanism for fucoxanthin's effects. In conclusion, the results obtained in this study elucidate fucoxanthin's molecular mechanisms and indicate that fucoxanthin may be considered a promising candidate for breast cancer-targeted therapy.


Assuntos
Produtos Biológicos , Neoplasias de Mama Triplo Negativas , Xantofilas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Carotenoides , Fosfatidilinositol 3-Quinase , Transdução de Sinais , Microambiente Tumoral , Proteína p120 Ativadora de GTPase
15.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555740

RESUMO

Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer.


Assuntos
Neoplasias , Alga Marinha , Humanos , Apoptose , Autofagia , Carotenoides/farmacologia , Pontos de Checagem do Ciclo Celular , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Xantofilas/farmacologia , Xantofilas/uso terapêutico
16.
Cancers (Basel) ; 14(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358602

RESUMO

Chemoresistance affects TNBC patient treatment responses. Therefore, identifying the chemoresistant gene provides a new approach to understanding chemoresistance in TNBC. BIRC5 was examined in the current study as a tool for predicting the prognosis of TNBC patients and assisting in developing alternative therapies using online database tools. According to the examined studies, BIRC5 was highly expressed in 45 to 90% of TNBC patients. BIRC5 is not only abundantly expressed but also contributes to resistance to chemotherapy, anti-HER2 therapy, and radiotherapy. Patients with increased expression of BIRC5 had a median survival of 31.2 months compared to 85.8 months in low-expression counterparts (HR, 1.73; CI, 1.4−2.13; p = 2.5 × 10−7). The overall survival, disease-free survival, relapse-free survival, distant metastasis-free survival, and the complete pathological response of TNBC patients with high expression of BIRC5 who received any chemotherapy (Taxane, Ixabepilone, FAC, CMF, FEC, Anthracycline) and anti-HER2 therapy (Trastuzumab, Lapatinib) did not differ significantly from those patients receiving any other treatment. Data obtained indicate that the BIRC5 promoter region was substantially methylated, and hypermethylation was associated with higher BIRC5 mRNA expression (p < 0.05). The findings of this study outline the role of BIRC5 in chemotherapy-induced resistance of TNBC, further indicating that BIRC5 may serve as a promising prognostic biomarker that contributes to chemoresistance and could be a possible therapeutic target. Meanwhile, several in vitro studies show that flavonoids were highly effective in inhibiting BIRC5 in genetically diverse TNBC cells. Therefore, flavonoids would be a promising strategy for preventing and treating TNBC patients with the BIRC5 molecule.

17.
Nutrients ; 14(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36432484

RESUMO

The variety of therapies available for treating and preventing triple-negative breast cancer (TNBC) is constrained by the absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor 2. Nrf2 (nuclear factor-erythroid 2-related factor), and PD-L1 (program cell death ligand 1), a downstream signaling target, have a strong correlation to oxidative stress and inflammation, major factors in the development and progression of TNBC. In this study, the genetically distinct MDA-MB-231 and MDA-MB-468 TNBC cells were treated with the natural component thymoquinone (TQ). The results show that TQ exhibits considerable antioxidant activity and decreases the generation of H2O2, at the same time increasing catalase (CAT) activity, superoxide dismutase (SOD) enzyme, and glutathione (GSH). Additionally, the results show that TQ treatment increased the levels of the different genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM in both cell lines with significant large-fold change in MDA-MB-468 cells (+157.65 vs. +1.7, +48.87 vs. +2.63 and +4.78 vs. +2.17), respectively. Nrf2 mRNA and protein expression were also significantly increased in TQ-treated TNBC cells despite being higher in MDA-MB-468 cells (6.67 vs. 4.06). Meanwhile, TQ administration increased mRNA levels while decreasing PD-L1 protein expression in both cell lines. In conclusion, TQ modifies the expression of multiple oxidative-stress-antioxidant system genes, ROS, antioxidant enzymes, Nrf2, and PD-L1 protein, pointing to the therapeutic potential and chemopreventive utilization of TQ in TNBC.


Assuntos
Antioxidantes , Neoplasias de Mama Triplo Negativas , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Regulação para Cima , Regulação para Baixo , Peróxido de Hidrogênio/metabolismo , Glutationa/metabolismo , RNA Mensageiro
18.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955463

RESUMO

Angiogenesis is a process that drives breast cancer (BC) progression and metastasis, which is linked to the altered inflammatory process, particularly in triple-negative breast cancer (TNBC). In targeting inflammatory angiogenesis, natural compounds are a promising option for managing BC. Thus, this study was designed to determine the natural alkaloid sanguinarine (SANG) potential for its antiangiogenic and antimetastatic properties in triple-negative breast cancer (TNBC) cells. The cytotoxic effect of SANG was examined in MDA-MB-231 and MDA-MB-468 cell models at a low molecular level. In this study, SANG remarkably inhibited the inflammatory mediator chemokine CCL2 in MDA-MB-231 and MDA-MB-468 cells. Furthermore, qRT-PCR confirmed with Western analysis studies showed that mRNA CCL2 repression was concurrent with reducing its main regulator IKBKE and NF-κB signaling pathway proteins in both TNBC cell lines. The total ERK1/2 protein was inhibited in the more responsive MDA-MB-231 cells. SANG exhibited a higher potential to inhibit cell migration in MDA-MB-231 cells compared to MDA-MB-468 cells. Data obtained in this study suggest a unique antiangiogenic and antimetastatic effect of SANG in the MDA-MB-231 cell model. These effects are related to the compound's ability to inhibit the angiogenic CCL2 and impact the ERK1/2 pathway. Therefore, SANG use may be recommended as a component of the therapeutic strategy for TNBC.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Benzofenantridinas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CCL2/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Isoquinolinas , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Front Plant Sci ; 13: 969301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991419

RESUMO

Muscadine berries display enhanced nutraceutical value due to the accumulation of distinctive phytochemical constituents with great potential antioxidant activity. Such nutritional and health merits are not only restricted to muscadine, but muscadine berries accumulate higher amounts of bioactive polyphenolics compared with other grape species. For the genetic study of the antioxidant trait in muscadine, a multi-locus genome-wide association study (GWAS) with 350 muscadine genotypes and 1,283 RNase H2 enzyme-dependent amplicon sequencing (rhAmpSeq) markers was performed. Phenotyping was conducted with several antioxidant-related traits, including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, and FRAP antioxidant assay in muscadine berry skin. The correlation coefficient analysis revealed that the TPC, and DPPH/FRAP activities were significantly correlated. Through the GWAS analysis, 12 QTNs were identified from the four traits, of which six were pleiotropic QTNs. Two pleiotropic QTNs, chr2_14464718 and chr4_16491374, were commonly identified from the TPC and DPPH/FRAP activities. Co-located genes with the two pleiotropic QTNs were isolated, and two candidate genes were identified with transcriptome analysis. UDP-glycosyltransferase and 4-hydroxy-4-methyl-2-oxoglutarate aldolase were the candidate genes that are positively and negatively correlated to the quantitative property of traits, respectively. These results are the first genetic evidence of the quantitative property of antioxidants in muscadine and provide genetic resources for breeding antioxidant-rich cultivars for both Muscadinia and Euvitis species.

20.
Nutrients ; 14(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684025

RESUMO

Neurodegenerative disorders affect more than fifty million Americans each year and represent serious health threats as the population ages. Neuroinflammation and oxidative stress are critical in the onset, progression, and pathogenesis of neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and amyotrophic lateral sclerosis (ALS). A wide range of natural compounds has been investigated because of their antioxidant, anti-inflammatory, and neuroprotective properties. The citrus flavonoid hesperetin (HPT), an aglycone of hesperidin found in oranges, mandarins, and lemons, has been extensively reported to exert neuroprotective effects in experimental models of neurogenerative diseases. This review has compiled multiple studies on HPT in both in vivo and in vitro models to study neurodegeneration. We focused on the modulatory effects of hesperetin on the release of cellular anti-inflammatory and antioxidative stress mediators. Additionally, this review discusses the hesperetin effect in maintaining the levels of microRNA (miRNA) and modulating autophagy as it relates to hesperetin's protective mechanisms against neurodegeneration. Moreover, this review is focused on providing experimental data for hesperetin's potential as a neuroprotective compound and discusses reported evidence that HPT crosses the blood-brain barrier. In summary, this review shows the evidence available in the literature to indicate the efficacy of hesperetin in delaying the onset of neurodegenerative diseases.


Assuntos
Citrus , Hesperidina , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Anti-Inflamatórios , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...